The Stereospecific Generation of the <u>cis</u>-Vicinal Methyls in Bremophilane and Valencane Sesquiterpenes: The Total Synthesis of (±) Bremophilone and (±) 7-Epieremophilone. Frederick E. Ziegler and Paul A. Wender

Sterling Chemistry Laboratory, Yale University New Haven, Connecticut 06520

(Received in USA 13 November 1973; received in UK for publication 28 December 1973)

Eremophilone (8b) is a representative of a class of non-isoprenoid sesquiterpenes first isolated by Simonsen from the wood oil of <u>Eremophila Mitchelli</u> and characterized by a <u>cis</u> arrangement of peripheral alkyl functionality about a 1-octalone framework.¹

Although a number of techniques have been reported² for the establishment of the required <u>cis</u>-methyl functionality by variations on the Robinson annelation theme, the sequences are at best sterepselective. While non-annelative methods have specifically provided the <u>cis</u>dimethyl groups, the aforementioned methods^{2,3} would entail a carbonyl transposition (2-octalone \rightarrow 1-octalone) when applied to eremophilone. A partial solution to both of these problems has been provided in a polyene cyclization route to tetrahydroeremophilone.⁴ We wish to report the total synthesis of eremophilone and its 7-epimer, by a route which stereospecifically introduces the dimethyl groups and avoids complex carbonyl transpositions.

Treatment of 3,4 dimethyl cyclohex-2-en-1-one⁵ with lithium divinyl cuprate-tri-nbutylphosphine complex (ether, -78°)⁶ provided the vinyl ketone in > 95% yield free of its diastereomer.⁷ The stereocontrol follows from axial addition⁸ (chair-like transition state) of the cuprate reagent with the C-4 methyl group in the favorable axial orientation (A^{1,2} interaction).⁹ Although metal-ammonia reductions and cuprate additions to enones are considered to proceed by similar mechanistic pathways,¹⁰ the geometry of the transition states are distinctly different, since 3,4 dimethyl cyclohex-2-en-1-one upon metal-ammonia reduction provides an 84/16 trans/cis, (no appreciable A^{1,2} interaction) mixture of 3,4 dimethyl cyclohexanone.¹¹ The carbonyl of la was protected as its ethylene glycol ketal (1b) which was subsequently subjected to hydroboration (Sia₂BH; alkaline H₂O₂)¹², providing the primary alcohol lc (6 3.78, t, -CH₂OH). Oxidation of the alcohol (CrO₃·2 pyr, CH₂Cl₂, 0°)¹³ afforded the ketal aldehyde ld (1725 cm⁻¹; 6 9.95 (t, 4 Hz, -CHO)) in 80% yield (65% from 3,4 dimethyl cyclohex-2-en-1-one).¹⁴

The ketal aldehyde was smoothly converted to the unsaturated ester $2a ((C_6H_5)_3PCCH_3CO_2CH_3)$, benzene, reflux 24 hrs., (E/Z = 14/1)) in 94% yield. Subsequent reduction with lithium aluminum hydride (inverse addition) provided the allylic alcohol 2b (95% yield). Mercuric acetate catalyzed exchange¹⁵ of the allylic alcohol with butyl vinyl ether afforded enol ether 2c, which upon pyrolysis (175°, 10 min, N₂) and subsequent hydrolysis (80% aq HOAc, room temperature, 18 hrs) yielded ketoaldehyde 3a (1715 and 1725 cm⁻¹) as a ~ 55/45¹⁶ mixture of diastereomers at the pro-C-7-center.¹⁷

8 a) $R_1 = i - C_3 H_5$, $R_2 = H$ b) $R_1 = H$, $R_2 = i - C_3 H_5$

Aldolization in aqueous methanolic sodium hydroxide produced enone 4a (1690 cm⁻¹, δ 6.67 (1H, dd, J = 3 and 5 Hz), ~ 5% yield) and a mixture of β -hydroxyketones 5 and 6 (1710 cm⁻¹, 65% yield)¹⁸ upon chromatography. Fractional crystallization of the mixture from hexane provided pure 6, which was pyrolyzed (250-270°, 10 min, N₂) to afford enone 4b. Inversion of the enone functionality was realized upon implementation of the Wharton reaction.¹⁹ Thus, sequential treatment of enone 4b with alkaline hydrogen peroxide (α , β epoxy-ketone), hydrazine hydrate in methanolic acetic acid (7), and Collin's oxidation¹³ provided (±) eremophilone identical by solution infrared and nuclear magnetic resonance spectroscopy with a sample from natural sources.²⁰

In a similar fashion, enone 4a was transformed into 7-epieremophilone 8a (1690 cm⁻¹; δ 6.32 (lH, t, J = 3Hz)) which displayed similar but distinctly different infrared and nuclear magnetic resonance spectra from eremophilone.²¹

References

- <u>Structure proof</u>: For leading references see, J. Simonsen and D.H.R. Barton, "The Terpenes", Cambridge University Press, New York, N.Y., 1952, Vol. III, p. 212-224 and D.H.R. Barton, "The Inaugural Simonsen Lecture", <u>Proc. Chem. Soc.</u>, 61 (1958). <u>Configuration</u>: D.F. Grant and D. Rogers, <u>Chem. Ind.</u>, (London) 278 (1956); D.F. Grant, R.G. Howells, and D. Rogers, Acta Cryst., <u>10</u>, 498 (1957); C. Djerassi, R. Mauli, and L.H. Zalkow, <u>J. Amer. Chem. Soc.</u>, 81, 3424 (1959), L.H. Zalkow, F.X.Markley, and C. Djerassi, <u>ibid.</u>, 81, 2914 (1959); and <u>idem.</u>, <u>ibid</u>, 82, 6354 (1960).
- (a) J.A. Marshall and T.M. Warne, <u>J. Org. Chem.</u>, <u>36</u>, 178 (1971); (b) H. Odom and A. Pinder, <u>Chem. Commun.</u>, 26 (1969), c.f. footnote 1, ref. 2a; (c) J.A. Marshall and R.A. Ruden, <u>J. Org. Chem.</u>, <u>36</u>, 594 (1971); (d) M. Pesaro, G. Bozzato, and P. Schudel, <u>Chem. Commun.</u>, 1153 (1968); (e) R.M. Coates and J.E. Shaw, <u>J. Org. Chem.</u>, <u>35</u>, 2597; (f) C. Berger, M. Franck-Neumann, and G. Ourrison, <u>Tetrahedron Lett.</u>, 3451 (1968); (g) E. Piers, R. Britton and W. DeWaal, <u>Can. J. Chem.</u>, <u>47</u>, 4307 (1969).
- R. Church, R.E. Ireland, and D. Shridhar, <u>J. Org. Chem.</u>, <u>27</u>, 707 (1962); E. Piers and R.J. Keziere, <u>Tetrahedron Lett</u>., 583 (1968); J.A. Marshall and G.M. Cohen, <u>1bid</u>., 3685 (1970).
- 4. S. Murayama, D. Chan and M. Brown, Tetrahedron Lett., 3715 (1968).
- 5. c.f. E.A. Braude, A.A. Webb, and M.V.S. Sultanbawa, J. Chem. Soc., 3328 (1958).
- 6. J. Hooz and R.B. Layton, Can. J. Chem., 48, 1626 (1970).

- 7. The ketone was degraded to <u>cis</u>-1,2 dimethyl cyclohexylnitrile by the following sequence: NH₂NH₂, KOH, DEG, 130°; 0₃, DMS, CH₃OH; Jones oxidation; PC1₅; NH₄OH; POC1₃, C1CH₂CH₂C1. Both the <u>cis</u>- and <u>trans</u>-nitriles have previously been separated by gas chromatography. F.E. Ziegler and P.A. Wender, <u>J. Amer. Chem. Soc.</u>, <u>93</u>, 4318 (1971).
- N.L. Allinger and C.K. Riew, <u>Tetrahedron Lett</u>., 1269 (1966); N. Luong Thi and H. Riviere, <u>ibid</u>., 1579 (1970).
- 9. F. Johnson and S. Malhotra, <u>J. Amer. Chem. Soc.</u>, <u>87</u>, 5492 (1965).
- 10. H.O. House and M.J. Umens, *ibid.*, *94*, 5495 (1972) and ref. cited therein.
- 11. S.K. Malhotra, D.F. Moakley, and F. Johnson, Tetrahedron Lett., 1089 (1967).
- 12. H.C. Brown and G. Zweifel, J. Amer. Chem. Soc., 83, 1241 (1961).
- 13. R. Ratcliffe and R. Rodehurst, J. Org. Chem., 35, 4000 (1970).
- 14. This sequence, equivalent to the conjugate addition of acetaldehyde to an α , β unsaturated ketone, had been reported during the course of this work. E.J. Corey and R.L. Carney, J. Amer. Chem. Soc., 93, 7318 (1971).
- 15. W. Watanabe and L. Conlon, <u>J. Amer. Chem. Soc.</u>, <u>79</u>, 2828 (1957).
- 16. The ratio could be determined by integration of the methyl region of the nmr spectrum of the corresponding ketoester 3b derived by Jones oxidation and diazomethane esterification.
- 17. There is essentially no influence by the assymetry at C-5 over the developing asymmetric center, pro-C-7. Preliminary results in a related system containing asymmetry at the pro C-6 center, indicate that the correct configuration can be generated with high selectivity at the isopropenyl carbon.
- 18. The stereochemical assignment of 5 is tentatively based upon the most stable configuration expected from the reversible aldol reaction. The stereochemistry of 6 is revealed in its nmr spectrum.
- 19. P. Wharton and D. Bohlen, J. Org. Chem., 26, 3615, 4781 (1961).
- 20. We express our gratitude to Professor A.R. Pinder for a sample of natural eremophilone and Professor R.M. Coates for copies of the ir and nmr spectra.
- 21. Financial support was provided by the National Science Foundation (GP-11273) and the National Cancer Institute, National Institutes of Health (CA-08869), to whom we are grateful.