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Eremophilone (8b) is-a representative of a class of non-isoprenoid sesquiterpenes first 

isolated by Simonsen from the wood oil of Eremophila Mitchelli and characterized by a & 

arrangement of peripheral alkyl functionality about a 1-octalone framework.' 

Although a number of techniques have been reported‘ for the establishment of the re- 

quired a-methyl functionality by variations on the Robinson annelation theme, the sequences 

are at best stereeselectlve. While non-annelative methods have specifically provided the cis- - 

dlmethyl groups, the aforementioned methods 2,3 would entail a carbonyl transposition (2-octa- 

lone d 1-octalone) when applied to eremophilone. A partial solution to both of these prob- 

lems has been provided in a polyene cyclization route to tetrahydroeremophilone.4 We wish to 

report the total synthesis of erenophilone and its 'I-epimer, by a route which stereospecifi- 

tally introduces the dimethyl groups and avoids complex carbonyl transpositions. 

Treatment of 3,4 dimethyl cyclohex-2-en-l-one5 with lithium divinyl cuprate-tri-n- 

butylphosphine complex (ether, -78")6 provided the vinyl ketone in > 95% yield free of its 

diastereomer.7 The stereocontrol follows frw axial addition' (chair-like transition state) 

of the cuprate reagent with the C-4 methyl group in the favorable axial orientation (A 132 

interaction).' Although metal-ammonia reductions and cuprate additions to enones are con- 

sidered to proceed by similar mechanistic pathways, 
10 

the geometry of the transition states 

are distinctly different, since 3,4 dimethyl cyclohex-2-en-l-one upon metal-ammonia reduction 

provides an 84116 translcis, (no appreciable A 192 interaction) mixture of 3,4 dimethyl cyclo- 

hexanone. 
11 

The carbonyl of la was protected as its ethylene glycol ketal (lb) which was sub- 

sequently subjected to hydroboration (Sia2BH; alkaline H202)12, providing the primary alcohol 

lc (8 3.78, t, -CH20H). Oxidation of the alcohol (CrC3*2 pyr, CH2C12, 0')" afforded the 

ketal aldehyde Id (1725 cm-'; 6 9.95 (t, 4 Ha, -CEJO)) in 80% yield (65% from 3,4 dimethyl 

cyclohex-2-en-l-one). 
14 

449 



Ao. 5 

Km-0CH2CH20- 

1 a) R=-CH=CH2, 2=0 2 a) R=C02CH3, Z=K 

b) R=-CH=CH2, i!=K b) RGi20H, Z=K 

c) R=-CH2CH20H, Z=K c) R=CH20CH=CH2, Z=K 

d) R=CH2CH0, Z=K 

The ketal aldehyde was smoothly converted to the unsaturated ester 2a((C6H5)3PCCH3C02CH3, 

benzene, reflux 24 hrs., (E/Z = 14/l)) in 94% yield. Subsequent reduction with lithium alumi- 

num hydride (inverse addition) provided the allylic alcohol 2b (95% yield). Mercuric acetate 

catalyzed exchange 
15 of the aLlylFc alcohol with butyl vinyl ether afforded enol ether 2c, 

which upon pyrolysis (175', 10 ruin, N2) and subsequent hydrolysis (80% aq HOAc, room tempera- 

ture, 18 hrs) yielded ketoaldehyde 3a (1715 and 1725 cm-') as a -55/45 
16 mixture of dia- 

stereomars at the pro-C-7-center. 
17 

4 a) Rl=i-C3H5, R2=H 

b) R,_=H. R2=i-C3H5 

7 8 a) Rl=i-C3H5, R2=H . 
b) %=H, R2=i-C3H5 



Ro. 5 

Aldolixation in 

(lH, dd, J = 3 and 5 
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atpsue methanolic sodium hydroxide produced enone 4a (1690 
-1 

cm , 6 6.67 
-1 

Hz), ~5% yield) and a mixture of B-hydroxyketones 5 and 6 (1710 cm , 

65% yield)18 upon chromatography. Fractional crystallieation of the mixture from hexane pro- 

vided pure 6, which was pyrolyzed (250-270*, 10 min, N2) to afford enone 4b. Inversion of the 

enone functionality was realieed upon implementation of the Wharton reaction. 
19 Thus, sequen- 

tial treatment of enone 4b with alkaline hydrogen peroxide (cY,D epoxy-ketone), hydrasine hyd- 

rate in methanolic acetic acid (7), and Collin's oxidation 
13 provided (It) eremophilone identi- 

cal by solution infrared and nuclear magnetic resonance spectroscopy with a sample from 

natural sources. 20 

-1 
In a similar fashion, enone 4a was transformed into 7-epieremophilone 8a (1690 cm ; 

6 6.32 (lH, t, J = 3Hs)) which displayed similar but distinctly different infrared and nuclear 

magnetic resonance spectra from eremophilone. 21 
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